Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

Scientists developed ‘cyberwood’ sensor from tobacco

Posted on March 31, 2015

Humans have been inspired by nature since the beginning of time.We mimic nature to develop new technologies, with examples ranging from machinery to pharmaceuticals to new materials.Researchers at the Department of Mechanical and Process Engineering have taken it a step further. In order to develop an extremely sensitive temperature sensor they took a close look at temperature-sensitive plants. However, they did not mimic the properties of the plants; instead, they developed a hybrid material that contains, in addition to synthetic components, the plant cells themselves. “We let nature do the job for us,” explains Chiara Daraio, Professor of Mechanics and Materials.

ETH scientists used cells form the tobacco plant to build the by far most sensitive temperature sensor. (Illustration: Daniele Flo / ETH Zurich)
ETH scientists used cells form the tobacco plant to build the by far most sensitive temperature sensor. (Illustration: Daniele Flo / ETH Zurich)

Water is replaced by nanotubes
It has been known for decades that plants have the extraordinary ability to register extremely fine temperature differences and respond to them through changes in the conductivity of their cells. In doing so, plants are better than any man-made sensor so far.

Cyberwood viewed under a scanning electron microscope, where the wood-like structure becomes visible. (Photo: Di Giacomo R et al PNAS 2015)
Cyberwood viewed under a scanning electron microscope, where the wood-like structure becomes visible. (Photo: Di Giacomo R et al PNAS 2015)

Di Giacomo experimented with tobacco cells in a cell culture. “We asked ourselves how we might transfer these cells into a lifeless, dry material in such a way that their temperature-sensitive properties are preserved,” he recounts. The scientists achieved their objective by growing the cells in a medium containing tiny tubes of carbon. These electrically conductive carbon nanotubes formed a network between the tobacco cells and were also able to penetrate the cell walls. When Di Giacomo dried the nanotube-cultivated cells, he discovered a woody, firm material that he calls ‘cyberwood’. In contrast to wood, this material is electrically conductive thanks to the nanotubes, and interestingly the conductivity is temperature-dependent and extremely sensitive, just like in living tobacco cells.

Touchless touchscreen and heat-sensitive cameras
As demonstrated by experiments, the cyberwood sensor can identify warm bodies even at distance; for example, a hand approaching the sensor from a distance of a few dozen centimetres. The sensor’s conductivity depends directly on the hand’s distance from the sensor.

According to the scientists, cyberwood could be used in a wide range of applications; for instance, in the development of a ‘touchless touchscreen’ that reacts to gestures, with the gestures recorded by multiple sensors. Equally conceivable might be heat-sensitive cameras or night-vision devices.

Thickening agent pectin in a starring role
The ETH scientists, together with a collaborator at the University of Salerno, Italy, not only subjected their new material’s properties to a detailed examination, they also analysed the origins of their extraordinary behaviour. They discovered that pectins and charged atoms (ions) play a key role in the temperature sensitivity of both living plant cells and the dry cyberwood. Pectins are sugar molecules found in plant cell walls that can be cross-linked, depending on temperature, to form a gel. Calcium and magnesium ions are both present in this gel. “As the temperature rises, the links of the pectin break apart, the gel becomes softer, and the ions can move about more freely,” explains Di Giacomo. As a result, the material conducts electricity better when temperature increases.

Share

Related News:

  1. Researchers develop bendable digital displays using bionanotechnology
  2. Major Advance in Artificial Photosynthesis Poses Win/Win for the Environment
  3. 3D display without the need for 3D glasses
  4. Scientists create innovative new ‘green’ concrete using graphene
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025
  • Anthropic Launches Claude Code to Revolutionize Developer Productivity February 25, 2025
  • Google Unveils Revolutionary AI Co-Scientist! February 24, 2025
  • Microsoft’s Majorana 1 Chip: Revolutionizing Quantum Computing with Topological Core Architecture February 20, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme