Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

New solar flow battery achieves 20% energy savings over traditional batteries

Posted on August 4, 2015

After debuting the world’s first solar air battery last fall, researchers at The Ohio State University have now reached a new milestone.

Researchers at The Ohio State University have invented the prototype of a new patent-pending device, “aqueous solar flow” battery—which combines a solar cell and a battery into a single device—now achieves a 20 percent energy savings over traditional lithium-iodine batteries.

They published their findings In the Journal of the American Chemical Society.

The 20 percent energy saving comes from sunlight, which is captured by a unique solar panel on top of the battery, explained Yiying Wu, professor of chemistry and biochemistry at Ohio State.

McCulloch_Yu

The solar panel is now a solid sheet, rather than a mesh as in the previous design. Another key difference comes from the use of a water-based electrolyte inside the battery.

Because water circulates inside it, the new design belongs to an emerging class of batteries called aqueous flow batteries.

As such, it is the first aqueous flow battery with solar capability. They called it as the first “aqueous solar flow battery.”

Flow_Battery.3624d4b5
Prototype aqueous solar flow battery under development at The Ohio State University.

The square piece of solar cell (center) is red, because the researchers are using a red dye to tune the wavelength of light it absorbs and converts to electrons.

Researchers around the world are working to develop aqueous flow batteries because they could theoretically provide affordable power grid-level energy storage someday.

The solar flow battery could thus bridge a gap between today’s energy grid and sources of renewable energy.

“This solar flow battery design can potentially be applied for grid-scale solar energy conversion and storage, as well as producing ‘electrolyte fuels’ that might be used to power future electric vehicles,” said Mingzhe Yu, a doctoral student at Ohio State.

Yiying_Wu

Previously, Yu designed the solar panel out of titanium mesh, so that air could pass through to the battery. But the new aqueous flow battery doesn’t need air to function, so the solar panel is now a solid sheet.

The solar panel is called a dye-sensitized solar cell, because the researchers use a red dye to tune the wavelength of light it captures and converts to electrons. Those electrons then supplement the voltage stored in the lithium-anode portion of the solar battery.

Something has to carry electrons from the solar cell into the battery, however, and that’s where the electrolyte comes in. A liquid electrolyte is typically part salt, part solvent; previously, the researchers used the salt lithium perchlorate mixed with the organic solvent dimethyl sulfoxide. Now they are using lithium iodide as the salt, and water as the solvent. (Water is an inorganic solvent, and an eco-friendly one. And lithium iodide offers a high-energy storage capacity with low cost.)

In tests, the researchers compared the solar flow battery’s performance to that of a typical lithium-iodine battery. They charged and discharged the batteries 25 times. Each time, both batteries discharged around 3.3 volts.

The difference was that the solar flow battery could produce the same output with less charging. The typical battery had to be charged to 3.6 volts to discharge 3.3 volts. The solar flow battery was charged to only 2.9 volts, because the solar panel made up the difference. That’s an energy savings of nearly 20 percent.

The project is still ongoing, and the solar flow design will undoubtedly evolve again as the researchers try to make the battery more efficient.

Share

Related News:

  1. Elon Musk unveils a new home battery “Tesla Powerwall”
  2. Surveillance Camera Powered by Ordinary Wi-Fi Broadcasts
  3. Smarter Window Materials Can Control Light and Energy
  4. Sodium-based Batteries Hold Promise for Cheap Energy Storage
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025
  • Anthropic Launches Claude Code to Revolutionize Developer Productivity February 25, 2025
  • Google Unveils Revolutionary AI Co-Scientist! February 24, 2025
  • Microsoft’s Majorana 1 Chip: Revolutionizing Quantum Computing with Topological Core Architecture February 20, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme