Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

Harvard develops an improved model of blood-cleansing device

Posted on August 21, 2015

A team of scientists at the Wyss Institute last year described the development of a device to treat sepsis that works by mimicking the human spleen. The device cleanses pathogens and toxins from blood flowing through a dialysis-like circuit.

Now the team has developed an improved device that works with conventional antibiotic therapies and is better positioned for near-term use in clinics. The improved design is described in the October issue of Biomaterials.

Sepsis is a common and frequently fatal medical complication that can occur when the body attempts to fight off serious infection and the resulting widespread inflammation can cause organs to shut down, blood pressure to drop, and the heart to weaken. This can lead to septic shock, which eventually kills more than 30 percent of septic patients in the United States. In most cases, the pathogen responsible for triggering the septic condition is not pinpointed, so clinicians blindly prescribe an antibiotic course in a blanket attempt to stave off the infectious bacteria and halt the dangerous inflammatory response.

But sepsis can be caused by a wide-ranging variety of pathogens that are not susceptible to antibiotics, including viruses, fungi, and parasites. What’s more, even when antibiotics successfully kill the invading bacteria, dead pathogens fragment and release toxins into the patient’s bloodstream.

Wyss-Fiber-Spleen-dialysis-setup

“The inflammatory cascade that leads to sepsis is triggered by pathogens, and specifically by the toxins they release. Thus, the most effective strategy is to treat with the best antibiotics you can muster, while also removing the toxins and remaining pathogens from the patient’s blood as quickly as possible.”

The Wyss team’s blood-cleansing approach can be administered quickly, even without identifying the infectious agent. This is because it uses the Wyss Institute’s proprietary, pathogen-capturing agent, FcMBL, which binds all types of live and dead infectious microbes, including bacteria, fungi, viruses, and the toxins they release.

FcMBL is a genetically engineered blood protein inspired by a naturally occurring human molecule called mannose-binding lectin (MBL), which is found in the innate immune system and binds to toxic invaders, marking them for capture by immune cells in the spleen.

Originally, the device was conceived to operate similarly to a dialysis machine: Infected blood in an animal — and potentially one day in a patient — is flowed from one vein through catheters to the device. There, FcMBL-coated magnetic beads are added to the blood, and then bead-bound pathogens are extracted by magnets inside the device before the cleansed blood is returned to the body through another vein.

The improved device removes the complexity, regulatory challenges, and cost associated with the magnetic beads and microfluidic architecture of its predecessor, but retains the FcMBL protein’s ability to bind to all kinds of live or dead pathogens and toxins. The optimized system uses hollow fiber filters found in dialysis cartridges already approved by the FDA whose inner walls are coated with the FcMBL protein.

In animal studies, treatment with this new pathogen-extracting device reduced the number of E. coli, Staphylococcus aureus, and endotoxins circulating in the bloodstream by more than 99 percent.

“If all goes well, physicians will someday be able to use the device in tandem with standard antibiotic treatments to deliver a one-two punch to pathogens, synergistically killing and cleansing all live and dead invaders from the bloodstream.”

With the improved blood-cleansing therapeutic device proving extremely effective in small-animal studies, the Wyss team is planning to move to large-animal studies as the next step to demonstrating the proof of concept that is required before it can advance to human clinical trials.

About Wyss Institute:

Wyss Institute for Biologically Inspired Engineering is a cross-disciplinary research institute at Harvard University which focuses on developing new bio-inspired materials and devices for applications in healthcare, manufacturing, robotics, energy, and sustainable architecture.

Related News:

Wyss’s new biosensor turns E. coli into something valuable: Harvard’s Wyss Institute for Biologically Inspired Engineering team aims to leverage the new biosensors to aid in its efforts to develop renewable chemical production strategies using genetically engineered microbes. Scientists can use this sensors for complex genetic reprogramming, and also it responds to valuable products such as renewable plastics or costly pharmaceuticals.

Share

Related News:

  1. MIT researchers reveal brainwave changes in patients receiving nitrous oxide
  2. Scientists discovered glaucoma medication, helps TB treatment
  3. Brain scans can predict the success of social anxiety disorder treatment
  4. Mobile phones could save us from obesity
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025
  • Anthropic Launches Claude Code to Revolutionize Developer Productivity February 25, 2025
  • Google Unveils Revolutionary AI Co-Scientist! February 24, 2025
  • Microsoft’s Majorana 1 Chip: Revolutionizing Quantum Computing with Topological Core Architecture February 20, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme