In recent years, companies have been working with “multi-material” 3-D printers that can fabricate many different functional items. Such printers, however, have traditionally been limited to three materials at a time, can cost as much as $250,000 each, and still require a fair amount of human intervention.
But researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) say that they’ve found a way to make a better, cheaper, more user-friendly printer. The new MultiFab printer can print an unprecedented 10 different materials at once, far more inexpensively than traditional models, by using machine-vision and 3-D-scanning techniques that save time, energy, and money.
The researchers have presented their paper at the SIGGRAPH computer-graphics conference.
The “MultiFab” system is the first 3-D printer, in delivering resolution at 40 microns — or less than half the width of a human hair— to use 3-D-scanning techniques from machine vision, which offers two key advantages in accuracy and convenience over traditional 3-D printing.
First, MultiFab can self-calibrate and self-correct, freeing users from having to do the fine-tuning themselves. For each layer of the design, the system’s feedback loop 3-D scans and detects errors and then generates so-called “correction masks.” This approach allows the use of inexpensive hardware while ensuring print accuracy.
Secondly, MultiFab gives users the ability to embed complex components, such as circuits and sensors, directly onto the body of an object, meaning that it can produce a finished product, moving parts and all, in one fell swoop.
The researchers have used MultiFab to print everything from smartphone cases to light-emitting diode lenses — and they envision an array of applications in consumer electronics, microsensing, medical imaging, and telecommunications, among other things.
They plan to also experiment with embedding motors and actuators that would make it possible to 3-D print more advanced electronics, including robots.
MultiFab was built using low-cost, off-the-shelf components that cost around $7,000 total.
There are many technical challenges in creating a printer like MultiFab: Different materials require different pressures and temperatures, so printing something complex usually involves printing all individual pieces separately, and then assembling them by hand.
But with MultiFab, you simply put the components into the platform and the printer does the rest. Cameras automatically scan the components’ three-dimensional geometries and uses that information to print other objects around them.
For example, you can put an iPhone into the printer, and program the system to print a case that is directly affixed onto the phone.
Other multi-material printers work via “extrusion” technologies, using nozzles that squirt out melted material, that then hardens, to build an object layer-by-layer. Such techniques, while sufficient for certain uses, often lead to low-resolution finished items.
MultiFab, on the other hand, mixes microscopic droplets of photopolymers together that are then sent through inkjet print heads similar to those in office printers. The computationally intensive process, which involves crunching dozens of gigabytes of visual data, can be much more easily scaled to larger objects and multiple materials.
Companies could edit and finalize designs faster, allowing them to bring products to market sooner. Big-box stores that have already installed single-material 3-D printers could graduate to multi-material ones, for use by casual hobbyists and small business owners alike.
Related News:
3D printed jumping soft robots: Harvard engineers have developed 3D printed soft robots that moves autonomously. This design combines the autonomy and speed of a rigid robot with the adaptability and resiliency of a soft robot and, because of 3-D printing, is relatively cheap and fast.
3d printed spinal implant: Researchers at RMIT University have collaborated with a medical device company and a neurosurgeon to successfully deliver a 3D printed vertebral cage to a patient with severe back pain.