Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

BioHybrid Robots: Researchers build a crawling robot from Sea Slug parts and a 3-D printed body

Posted on July 19, 2016

Researchers at Case Western Reserve University have combined tissues from a sea slug with flexible 3-D printed components to build “biohybrid” robots that crawl like sea turtles on the beach.
A muscle from the slug’s mouth provides the movement, which is currently controlled by an external electrical field. However, future iterations of the device will include ganglia, bundles of neurons and nerves that normally conduct signals to the muscle as the slug feeds, as an organic controller.
The researchers also manipulated collagen from the slug’s skin to build an organic scaffold to be tested in new versions of the robot.

In the future, swarms of biohybrid robots could be released for such tasks as locating the source of a toxic leak in a pond that would send animals fleeing. Or they could search the ocean floor for a black box flight data recorder, a potentially long process that may leave current robots stilled with dead batteries.
The researchers chose the sea slug because the animal is durable down to its cells, withstanding substantial changes in temperature, salinity and more as Pacific Ocean tides shift its environment between deep water and shallow pools. Compared to mammal and bird muscles, which require strictly controlled environments to operate, the slug’s are much more adaptable.
Muscle cells are compliant and also carry their own fuel source–nutrients in the medium around them. Because they’re soft, they’re safer for operations than nuts-and-bolts actuators and have a much higher power-to-weight ratio.
If completely organic robots prove workable, a swarm released at sea or in a pond or a remote piece of land, won’t be much of a worry if they can’t be recovered. They’re likely to be inexpensive and won’t pollute the location with metals and battery chemicals but be eaten or degrade into compost.

Share

Related News:

  1. Mimicking Biological Movements with Soft Robots
  2. Case Western Reserve University researchers design soft, flexible origami-inspired robot
  3. Toyota unveils T-HR3, a Humanoid Robot that mirrors User
  4. Robot makes coffee at new cafe in Japan’s capital
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025
  • Anthropic Launches Claude Code to Revolutionize Developer Productivity February 25, 2025
  • Google Unveils Revolutionary AI Co-Scientist! February 24, 2025
  • Microsoft’s Majorana 1 Chip: Revolutionizing Quantum Computing with Topological Core Architecture February 20, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme
Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us