A human child is able to reliably grasp objects after one year, and takes around four years to acquire more sophisticated precision grasps. However, networked robots can instantaneously share their experience with one another, so if we dedicate 14 separate robots to the job of learning grasping in parallel, we can acquire the necessary experience much faster.
Google Research Scienctists are working on implementing this concept.
While initially the grasps are executed at random and succeed only rarely, each day the latest experiences are used to train a deep convolutional neural network (CNN) to learn to predict the outcome of a grasp, given a camera image and a potential motor command. This CNN is then deployed on the robots the following day, in the inner loop of a servoing mechanism that continually adjusts the robot’s motion to maximize the predicted chance of a successful grasp. In essence, the robot is constantly predicting, by observing the motion of its own hand, which kind of subsequent motion will maximize its chances of success. The result is continuous feedback: what we might call hand-eye coordination.
Neural networks have made great strides in allowing us to build computer programs that can process images, speech, text, and even draw pictures. However, introducing actions and control adds considerable new challenges, since every decision the network makes will affect what it sees next. Overcoming these challenges will bring us closer to building systems that understand the effects of their actions in the world. If we can bring the power of large-scale machine learning to robotic control, perhaps we will come one step closer to solving fundamental problems in robotics and automation.