Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

This soft robotic gripper can screw in your light bulbs for you

Posted on October 11, 2017

The engineering team, led by Michael T. Tolley, a roboticist at the Jacobs School of Engineering at UC San Diego, presented the gripper at the International Conference on Intelligent Robots and Systems (or IROS) Sept. 24 to 28 in Vancouver, Canada.

This soft robotic gripper can change your light bulbs for you

How many robots does it take to screw in a light bulb? The answer: just one, assuming you’re talking about a new robotic gripper developed by engineers at the University of California San Diego.

The engineering team has designed and built a gripper that can pick up and manipulate objects without needing to see them and needing to be trained.  The gripper is unique because it brings together three different capabilities. It can twist objects; it can sense objects; and it can build models of the objects it’s manipulating. This allows the gripper to operate in low light and low visibility conditions, for example.

Researchers tested the gripper on an industrial Fetch Robotics robot and demonstrated that it could pick up, manipulate and model a wide range of objects, from lightbulbs to screwdrivers.

“We designed the device to mimic what happens when you reach into your pocket and feel for your keys,” said Tolley.

The gripper has three fingers. Each finger is made of three soft flexible pneumatic chambers, which move when air pressure is applied. This gives the gripper more than one degree of freedom, so it can actually manipulate the objects it’s holding. For example, the gripper can turn screwdrivers, screw in lightbulbs and even hold pieces of paper, thanks to this design.

In addition, each finger is covered with a smart, sensing skin. The skin is made of silicone rubber, where sensors made of conducting carbon nanotubes are embedded. The sheets of rubber are then rolled up, sealed and slipped onto the flexible fingers to cover them like skin.

The conductivity of the nanotubes changes as the fingers flex, which allows the sensing skin to record and detect when the fingers are moving and coming into contact with an object. The data the sensors generate is transmitted to a control board, which puts the information together to create a 3D model of the object the gripper is manipulating.  It’s a process similar to a CT scan, where 2D image slices add up to a 3D picture.

The breakthroughs were possible because of the team’s diverse expertise and their experience in the fields of soft robotics and manufacturing, Tolley said.

Next steps include adding machine learning and artificial intelligence to data processing so that the gripper will actually be able to identify the objects it’s manipulating, rather than just model them. Researchers also are investigating using 3D printing for the gripper’s fingers to make them more durable.

This work was supported by the Office of Naval Research grant number N000141712062, the UC San Diego Frontiers of Innovation Scholars Program (FISP) and the National Science Foundation Graduate Research Fellowship Grant No. DGE-1144086.

News Source: http://ucsdnews.ucsd.edu/pressrelease/this_soft_robotic_gripper_can_screw_in_your_light_bulbs_for_you

Interesting Robot Videos

5 Amazing Social Robots that can become part of your Family

https://www.youtube.com/watch?v=5jsuVSNEJiU

Robots playing Soccer for RoboCup. They may win Humans in World Cup within few Decades

5 Most Useful Robots for your Home

Transparent Hydrogel Robots can catch and release live Fish

Robird is a Flying Robot for controlling Birds at Airports, Harbours and Agriculture Fields

Watch more robot videos at https://www.youtube.com/playlist?list=PLK2ccNIJVPpARGjc01A-FtY4tYlB21lQA

Share

Related News:

  1. Designing custom robots in a matter of minutes
  2. Novel 3-D printing method embeds sensing capabilities within robotic actuators
  3. Magnetic 3-D-printed structures crawl, roll, jump, and play catch
  4. Researchers develop origami-inspired robot
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • Harvard Sues Trump Administration Over International Student Ban May 23, 2025
  • Stanford Researchers Develop AI Agents That Simulate Human Behavior with High Accuracy May 23, 2025
  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025
  • Anthropic Launches Claude Code to Revolutionize Developer Productivity February 25, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme
Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us