Rice University engineers are using 3-D printers to turn structures that have until now existed primarily in theory into strong, light and durable materials with complex, repeating patterns.
The porous structures called schwarzites are designed with computer algorithms, but Rice researchers found they could send data from the programs to printers and make macroscale, polymer models for testing. Their samples strive to use as little material as possible and still provide strength and compressibility.
The results reported in Advanced Materials are works of art that may someday lead to nanoscale electronic devices, catalysts, molecular sieves and battery components, and on the macroscale could become high-load-bearing, impact-resistant components for buildings, cars and aircraft.
It may someday be possible, they said, to print an entire building as one schwarzite “brick.”
Schwarzites, named after German scientist Hermann Schwarz, who hypothesized the structures in the 1880s, are mathematical marvels that have inspired a large number of organic and inorganic constructs and materials. The discovery at Rice of the Nobel Prize-winning buckminsterfullerene (or buckyball) provided further inspiration for scientists to explore the design of 3-D forms from 2-D surfaces.
Such structures remained theoretical until 3-D printers provided the first practical way to make them. The Rice lab of materials scientist Pulickel Ajayan, in collaboration with researchers at the University of Campinas, São Paulo, investigated the bottom-up construction of schwarzites through molecular dynamics simulations and then printed those simulations in the shapes of polymer cubes.
“The geometries of these are really complex; everything is curved, the internal surfaces have negative curvature and the morphologies are very interesting,” said Rice postdoctoral researcher Chandra Sekhar Tiwary, who led an earlier study that showed how seashells protect soft bodies from extreme pressure by transferring stress throughout their structures.
“Schwarzite structures are very much the same,” he said. “The theory shows that at the atomic scale, these materials can be very strong. It turns out that making the geometry bigger with polymer gives us a material with a high load-bearing capacity.”
Schwarzites also displayed excellent deformation characteristics, he said. “The way a material breaks is important,” Tiwary said. “You don’t want things to break catastrophically; you want them to break slowly. These structures are beautiful because if you apply force to one side, they deform slowly, layer by layer.
“You can make a whole building out of this material, and if something falls on it, it’s going to collapse slowly, so what’s inside will be protected,” he said.
Because they can take a variety of forms, the Rice team limited its investigation to primitive and gyroid structures, which have periodic minimal surfaces as originally conceived by Schwarz. In tests, both transferred loads across the entire geometry of the structures no matter which side was compressed. That held true in the atom-level simulations as well as for the printed models.
That was unexpected, said Douglas Galvão, a professor at the University of Campinas who studies nanostructures through molecular dynamics simulations. He suggested the project when Tiwary visited the Brazil campus as a research fellow through the American Physical Society and Brazilian Physical Society.
“It is a little surprising that some atomic-scale features are preserved in the printed structures,” Galvão said. “We discussed that it would be nice if we could translate schwarzite atomic models into 3-D printed structures. After some tentatives, it worked quite well. This paper is a good example of an effective theory-experiment collaboration.”
The researchers said their next step will be to refine the surfaces with higher-resolution printers and further minimize the amount of polymer to make the blocks even lighter. In the far future, they envision printing 3-D schwarzites with ceramic and metallic materials on a grander scale.
“There’s no reason these have to be blocks,” said co-author and Rice graduate student Peter Owuor. “We’re basically making perfect crystals that start with a single cell that we can replicate in all directions.”
Rice research assistant Seyed Mohammad Sajadi is lead author of the paper. Co-authors are Rice senior Steven Schara, Associate Research Professor Robert Vajtai and Jun Lou, a professor of materials science and nanoengineering, all of Rice; and postdoctoral researcher Cristiano Woellner and Professor Varlei Rodrigues of the University of Campinas. Ajayan is chair of Rice’s Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.
News Source: http://news.rice.edu/2017/11/16/math-gets-real-in-strong-lightweight-structures-2/
Learn basics of 3D Printing at http://www.news.qualitypointtech.com/basics-of-3d-printing/
Interesting 3D Printing videos
3D-printed material can carry 160,000 times its own weight. And, Diffraction limit disproved.
Now engineers at MIT and Lawrence Livermore National Laboratory (LLNL) have devised a way to translate that airy, yet remarkably strong, structure down to the microscale – designing a system that could be fabricated from a variety of materials, such as metals or polymers, and that may set new records for stiffness for a given weight.
The new design is based on the use of microlattices with nanoscale features, combining great stiffness and strength with ultralow density.
3D Printing Technology to build 2,500 Square Foot House In 20 Hours.
3D printing Technology is growing very fast upto the level of printing a building itself. A professor is working on technology named as Contour Crafting which can print an entire 2,500 sqft house in 20 hours.
Now 3D-bioprinter can print 3D Objects using Cellulose from Wood
A group of researchers at Chalmers University of Technology have managed to print and dry three-dimensional objects made entirely by cellulose for the first time with the help of a 3D-bioprinter. They also added carbon nanotubes to create electrically conductive material. The effect is that cellulose and other raw material based on wood will be able to compete with fossil-based plastics and metals in the on-going additive manufacturing revolution, which started with the introduction of the 3D-printer.
3-D-printed robots with shock-absorbing skins
Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) will present a new method for 3-D printing soft materials that make robots safer and more precise in their movements — and that could be used to improve the durability of drones, phones, shoes, helmets, and more.
The team’s “programmable viscoelastic material” (PVM) technique allows users to program every single part of a 3D-printed object to the exact levels of stiffness and elasticity they want, depending on the task they need for it.
Five ways Bioengineers want to use 3-D Printing
Now that 3D printing has made it easier to generate custom-made prosthetics, bioengineers are looking ahead at manufacturing actual cellular material. Such technology could be the basis for personalized biomedical devices; tissue-engineered skin, cartilage, and bone; or even working bladders.
First-ever 3-D printed robots made of both Solids and Liquids
Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) present the first-ever technique for 3-D printing robots that involves printing solid and liquid materials at the same time.
MIT’s 3D Printing Design Tool “Foundry” is Photoshop for 3-D materials
A team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) will present “Foundry,” a system for custom-designing a variety of 3-D printed objects with multiple materials.
MIT’s “MultiFab” 3D printer can print 10 materials at once
Researchers at MIT say that they’ve found a way to make a better, cheaper, more user-friendly printer. They presented a 3-D printer that can print an unprecedented 10 different materials at once by using 3-D-scanning techniques that save time, energy, and money.
Watch some more 3DPrinting videos at https://www.youtube.com/playlist?list=PLK2ccNIJVPpC7ny_lpawhue_k3pfwqTQ2