Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

Engineers create miniature self-sealing ‘wound’

Posted on February 9, 2018

Biomedical engineers have developed a miniature self-sealing model system for studying bleeding and the clotting of wounds. The researchers envision the device as a drug discovery platform and potential diagnostic tool.

Lead author Wilbur Lam, MD, PhD says that blood clotting involves the damaged blood vessel, platelets, blood clotting proteins that form a net-like mesh, and the flow of the blood itself.

“Current methods to study blood clotting require isolation of each of these components, which prevents us from seeing the big picture of what’s going with the patient’s blood clotting system,” says Lam, assistant professor in the Department of Pediatrics at Emory University School of Medicine and in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

The model is the result of a collaboration between Lam’s group at Emory and Georgia Tech and Shawn Jobe, MD, PhD at the Blood Center of Wisconsin.  The co-first authors of the paper are research specialist Yumiko Sakurai, instructor Elaissa Hardy, PhD and senior engineer Byungwook Ahn, PhD, now at LG Electronics.

The system is the first to reproduce all the aspects of blood vessel injury seen in the microvasculature: blood loss due to trauma, clot formation by whole blood and repair of the blood vessel lining. Previous models might only simulate clot formation, for example. The model does not include smooth muscle and does not reproduce aspects of larger blood vessels, however.

The system consists of a layer of human endothelial cells, which line blood vessels, cultured on top of a pneumatic valve. The “wound” is created by activating a pneumatic valve, opening what Lam calls a trap door. Donated human blood flows through the wound, which is about 130 micrometers across.

In the accompanying movie, most of the blood cells are seen as grey: erythrocytes are round grey donuts, while platelets are smaller specks. The red-stained cells are actually white blood cells. A green extracellular “glue” can be seen at the top of the wound; this is fibrin, which holds the clot together.

In real time, it takes about 8 minutes for blood flow into the wound to stop. Without the endothelial cells, the blood flow does not stop.

The system responds to manipulation by drugs and other alterations that reproduce clotting disorders. Blood from hemophilia A patients form abnormal clots and shows extended bleeding time in the model.

In the Nature Communications paper, the authors also describe insights into how the drug eptifibatide affects the interactions of platelets and other cells in the 3-D space of a wound.

News Source: http://news.emory.edu/stories/2018/02/ncomms_lam_woundmodel/index.html

Related Videos:

This Smart Hydrogel-based Wound Dressing could be the Band-Aid of the Future

FDA approved XSTAT 30 which can seal a gunshot wound within 20 seconds

This new material self-heals like Wolverine’s skin | QPT

Ingestible Origami Robot to remove Button Battery stuck to wall of Stomach

Share

Related News:

  1. 5 Children get 3D-printed Lab-Made Ears Grown From Their Own Cells
  2. Research team develops clinically-validated 3D printed stethoscope
  3. University of Toronto researchers develop portable 3D skin printer to repair deep wounds
  4. First 3D printed human corneas
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • Harvard Sues Trump Administration Over International Student Ban May 23, 2025
  • Stanford Researchers Develop AI Agents That Simulate Human Behavior with High Accuracy May 23, 2025
  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025
  • Anthropic Launches Claude Code to Revolutionize Developer Productivity February 25, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme