Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

MIT’s ML helps Computers to perceive Human Emotions

Posted on July 30, 2018

 

MIT Media Lab researchers have developed a machine-learning model that takes computers a step closer to interpreting our emotions as naturally as humans do.

In the growing field of “affective computing,” robots and computers are being developed to analyze facial expressions, interpret our emotions, and respond accordingly. Applications include, for instance, monitoring an individual’s health and well-being, gauging student interest in classrooms, helping diagnose signs of certain diseases, and developing helpful robot companions.

A challenge, however, is people express emotions quite differently, depending on many factors. General differences can be seen among cultures, genders, and age groups. But other differences are even more fine-grained: The time of day, how much you slept, or even your level of familiarity with a conversation partner leads to subtle variations in the way you express, say, happiness or sadness in a given moment.

Human brains instinctively catch these deviations, but machines struggle. Deep-learning techniques were developed in recent years to help catch the subtleties, but they’re still not as accurate or as adaptable across different populations as they could be.

The Media Lab researchers have developed a machine-learning model that outperforms traditional systems in capturing these small facial expression variations, to better gauge mood while training on thousands of images of faces. Moreover, by using a little extra training data, the model can be adapted to an entirely new group of people, with the same efficacy. The aim is to improve existing affective-computing technologies.

Traditional affective-computing models use a “one-size-fits-all” concept. They train on one set of images depicting various facial expressions, optimizing features — such as how a lip curls when smiling — and mapping those general feature optimizations across an entire set of new images.

The researchers, instead, combined a technique, called “mixture of experts” (MoE), with model personalization techniques, which helped mine more fine-grained facial-expression data from individuals. This is the first time these two techniques have been combined for affective computing.

In MoEs, a number of neural network models, called “experts,” are each trained to specialize in a separate processing task and produce one output. The researchers also incorporated a “gating network,” which calculates probabilities of which expert will best detect moods of unseen subjects. “Basically the network can discern between individuals and say, ‘This is the right expert for the given image.

For their model, the researchers personalized the MoEs by matching each expert to one of 18 individual video recordings in the RECOLA database, a public database of people conversing on a video-chat platform designed for affective-computing applications. They trained the model using nine subjects and evaluated them on the other nine, with all videos broken down into individual frames.

The researchers then performed further model personalization, where they fed the trained model data from some frames of the remaining videos of subjects, and then tested the model on all unseen frames from those videos. Results showed that, with just 5 to 10 percent of data from the new population, the model outperformed traditional models by a large margin — meaning it scored valence and arousal on unseen images much closer to the interpretations of human experts.

Another goal is to train the model to help computers and robots automatically learn from small amounts of changing data to more naturally detect how we feel and better serve human needs.

A promising application is human-robotic interactions, such as for personal robotics or robots used for educational purposes, where the robots need to adapt to assess the emotional states of many different people. One version, for instance, has been used in helping robots better interpret the moods of children with autism.

News Source: http://news.mit.edu/2018/helping-computers-perceive-human-emotions-0724

Related Video:

Personalized “Deep Learning” equips Robots for Autism Therapy

Watch more Artificial Intelligence Videos at our You Tube Channel Qualitypointtech

 

Share

Related News:

  1. Artificial intelligence uses internet searches to help create mind association magic trick
  2. Loihi: Intel’s New Self-Learning Chip Promises to Accelerate Artificial Intelligence
  3. An artificial intelligence algorithm developed by Stanford researchers can determine a neighborhood’s political leanings by its cars
  4. MIT Builds a Self-Driving Car for Unmapped Country Roads
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • Stanford Researchers Develop AI Agents That Simulate Human Behavior with High Accuracy May 23, 2025
  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025
  • Anthropic Launches Claude Code to Revolutionize Developer Productivity February 25, 2025
  • Google Unveils Revolutionary AI Co-Scientist! February 24, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme