Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

First dexterous hand prosthesis implanted

Posted on February 6, 2019

A female Swedish patient with hand amputation has become the first recipient of an osseo-neuromuscular implant to control a dexterous hand prosthesis.

In a pioneering surgery, titanium implants were placed in the two forearm bones (radius and ulnar), from which electrodes to nerves and muscle were extended to extract signals to control a robotic hand and to provide tactile sensations.

First person with below-elbow amputation implanted with an osseo-neuromuscular prosthesis. Credits: Dr. Max

This makes it the first clinically viable, dexterous and sentient prosthetic hand usable in real life. The breakthrough is part of the European project DeTOP.

Conventional prosthetic hands rely on electrodes placed over the skin to extract control signals from the underlying stump muscles. These superficial electrodes deliver limited and unreliable signals that only allow control of a couple of gross movements (opening and closing the hand). Richer and more reliable information can be obtained by implanting electrodes in all remaining muscle in the stump instead. Sixteen electrodes were implanted in this first patient in order to achieve more dexterous control of a novel prosthetic hand developed in Italy by the Scuola Superiore Sant’Anna and Prensilia. 

Video on the first patient with below-elbow amputation implanted with osseo-neuromuscular interfaces (e-OPRA).

Current prosthetic hands have also limited sensory feedback. They do not provide tactile or kinesthetic sensation, so the user can only rely on vision while using the prosthesis. Users cannot tell how strongly an object is grasped, or even when contact has been made. By implanting electrodes in the nerves that used to be connected to the lost biological sensors of the hand, researchers can electrically stimulate these nerves in a similar manner as information conveyed by the biological hand. This results in the patient perceiving sensations originating in the new prosthetic hand, as it is equipped with sensors that drive the stimulation of the nerve to deliver such sensations.

One of the most important aspects of this work is that this is the first technology usable in daily life. This means it is not limited to a research laboratory.

The Swedish group – Integrum AB and Chalmers University of Technology – have previously demonstrated that control of a sentient prosthesis in daily life was possible in above-elbow amputees using similar technology (video). This was not possible in below-elbow amputees where there are two smaller bones rather than a single larger one as in the upper arm. This posed several challenges on the development of the implant system. On the other hand, it also presents an opportunity to achieve a more dexterous control of an artificial replacement. This is because many more muscles are available to extract neural commands in below-elbow amputations.
Bones weaken if they are not used (loaded), as commonly happen after amputation. The patient is following a rehabilitation program to regain the strength in her forearm bones to be able to fully load the prosthetic hand. In parallel, she is also relearning how to control her missing hand using virtual reality​ (video), and in few weeks, she will be using a prosthetic hand with increasing function and sensations in her daily life. Two more patients will be implanted with this new generation of prosthetic hands in the upcoming months, in Italy and Sweden.

News Source: https://www.chalmers.se/en/departments/e2/news/Pages/Hand-prosthesis-successfully-implanted.aspx

Share

Related News:

  1. Research team develops clinically-validated 3D printed stethoscope
  2. A wearable system to monitor the stomach’s activity throughout the day
  3. University of Toronto researchers develop portable 3D skin printer to repair deep wounds
  4. Use of Prosthetic Hands becomes Easier with New Technology
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025
  • Anthropic Launches Claude Code to Revolutionize Developer Productivity February 25, 2025
  • Google Unveils Revolutionary AI Co-Scientist! February 24, 2025
  • Microsoft’s Majorana 1 Chip: Revolutionizing Quantum Computing with Topological Core Architecture February 20, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme
Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us