Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

Tiny Vibration-Powered Robots Are the Size of the World’s Smallest Ant

Posted on July 19, 2019

Georgia Tech researchers have created a new type of tiny 3D-printed robot that moves by harnessing vibration from piezoelectric actuators, ultrasound sources or even tiny speakers. Swarms of these “micro-bristle-bots” might work together to sense environmental changes, move materials – or perhaps one day repair injuries inside the human body.

The prototype robots respond to different vibration frequencies depending on their configurations, allowing researchers to control individual bots by adjusting the vibration. Approximately two millimeters long – about the size of the world’s smallest ant – the bots can cover four times their own length in a second despite the physical limitations of their small size.

The micro-bristle-bots consist of a piezoelectric actuator glued onto a polymer body that is 3D-printed using two-photon polymerization lithography (TPP). The actuator generates vibration and is powered externally because no batteries are small enough to fit onto the bot. The vibrations can also come from a piezoelectric shaker beneath the surface on which the robots move, from an ultrasound/sonar source, or even from a tiny acoustic speaker.

Credit: Georgia Tech

The vibrations move the springy legs up and down, propelling the micro-bot forward. Each robot can be designed to respond to different vibration frequencies depending on leg size, diameter, design and overall geometry. The amplitude of the vibrations controls the speed at which the micro-bots move.

Other researchers have worked on micro-robots that use magnetic fields to produce movement. While that is useful for moving entire swarms at once, magnetic forces cannot easily be used to address individual robots within a swarm.

News Source: Georgia Tech

Share

Related News:

  1. Smart microrobots that can adapt to their surroundings
  2. Robot-ants “Tribots” jump, communicate and work together as a Team
  3. Origami microbots: Centuries-old artform guides cutting-edge advances in tiny machines
  4. Samsung Introduces Latest Innovations for a Better Normal at CES 2021
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • Harvard Sues Trump Administration Over International Student Ban May 23, 2025
  • Stanford Researchers Develop AI Agents That Simulate Human Behavior with High Accuracy May 23, 2025
  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025
  • Anthropic Launches Claude Code to Revolutionize Developer Productivity February 25, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme