An AI model developed at MIT and Qatar Computing Research Institute uses only satellite imagery to automatically tag road features in digital maps.
This innovation could improve GPS navigation, especially in countries with limited map data.
Showing drivers more details about their routes can often help them navigate in unfamiliar locations. Lane counts, for instance, can enable a GPS system to warn drivers of diverging or merging lanes. Incorporating information about parking spots can help drivers plan ahead, while mapping bicycle lanes can help cyclists negotiate busy city streets. Providing updated information on road conditions can also improve planning for disaster relief.
But creating detailed maps is an expensive, time-consuming process done mostly by big companies, such as Google, which sends vehicles around with cameras strapped to their hoods to capture video and images of an area’s roads. Combining that with other data can create accurate, up-to-date maps. Because this process is expensive, some parts of the world are ignored.
A solution is to unleash machine-learning models on satellite images — which are easier to obtain and updated fairly regularly — to automatically tag road features. But roads can be occluded by trees and buildings, making it a challenging task. In a research paper, the MIT researchers describe “RoadTagger,” which uses a combination of neural network architectures to automatically predict the number of lanes and road types (residential or highway) behind obstructions.
In testing RoadTagger on occluded roads from digital maps of 20 U.S. cities, the model counted lane numbers with 77 percent accuracy and inferred road types with 93 percent accuracy. The researchers are also planning to enable RoadTagger to predict other features, such as parking spots and bike lanes.
News Source: MIT