Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

Researchers 3D printed ear cartilage with cellulose composite material

Posted on March 27, 2020

Researchers from ETH Zurich and the Swiss Federal Laboratories for Materials Science and Technology (Empa) have set a new world record: they 3D printed complex objects with higher cellulose content than that of any other additively manufactured cellulose-​based parts. To achieve this, they used a clever trick.

Trees and other plants lead the way: they produce cellulose themselves and use it to build complex structures with extraordinary mechanical properties. That makes cellulose attractive to materials scientists who are seeking to manufacture sustainable products with special functions. However, processing materials into complex structures with high cellulose content is still a big challenge for materials scientists.

A group of researchers at ETH Zurich and Empa have now found a way to process cellulose using 3D printing so as to create objects of almost unlimited complexity that contain high levels of cellulose particles.

To do this, the researchers combined printing via direct ink writing (DIW) method with a subsequent densification process to increase the cellulose content of the printed object to a volume fraction of 27 percent. Their work was recently published in the Advanced Functional Materials journal.

The ETH and Empa researchers are admittedly not the first to process cellulose with the 3D printer. However, previous approaches, which also used cellulose-​containing ink, have not been able to produce solid objects with such a high cellulose content and complexity.

The composition of the printing ink is extremely simple. It consists only of water in which cellulose particles and fibres measuring a few hundred nanometres have been dispersed. The cellulose content is in between six and 14 percent of the ink volume.

The ETH researchers used a trick to densify the printed cellulose products: i-e After printing a cellulose-​based water ink, they put the objects in a bath containing organic solvents. As cellulose does not like organic solvents, the particles tend to aggregate. This process results into shrinkage of the printed part and consequently to a significant increase in the relative amount of cellulose particles within the material.

Credit: M.Hausmann/ETH/Empa

In a further step, the scientists soaked the objects in a solution containing a photosensitive plastic precursor. By removing the solvent by evaporation, the plastic precursors infiltrate the cellulose-​based scaffold. Next, to convert the plastic precursors into a solid plastic, they exposed the objects to UV light. This produced a composite material with a cellulose content of 27 volume percent.

Using this method, the researchers were able to manufacture various composite objects, including some of a delicate nature, such as a type of flame sculpture that is only 1 millimetre thick. However, densification of printed parts with wall thickness higher than five milimeters lead to distortion of the structure because the surface of the densifying object contracts faster than its core.

The researchers investigated their objects using X-​ray analyses and mechanical tests. Their findings showed that the cellulose nanocrystals are aligned similarly to those present in natural materials.

The printed parts are still small. But there are many potential applications, from customised packaging to cartilage-​replacement implants for ears. The researchers have also printed an ear based on a human model. Until such a product could be used in clinical practice, however, more research and clinical trials are needed.

This kind of cellulose technology could also be of interest to the automotive industry. Japanese carmakers have already built a prototype of a sports car for which the body parts are made almost entirely of cellulose-​based materials.

News Source: ETH Zurich

Share

Related News:

  1. 5 Children get 3D-printed Lab-Made Ears Grown From Their Own Cells
  2. Research team develops clinically-validated 3D printed stethoscope
  3. University of Toronto researchers develop portable 3D skin printer to repair deep wounds
  4. First 3D printed human corneas
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • Coactive: Teaching AI to See and Understand Visual Content June 10, 2025
  • Harvard Sues Trump Administration Over International Student Ban May 23, 2025
  • Stanford Researchers Develop AI Agents That Simulate Human Behavior with High Accuracy May 23, 2025
  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme