Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

Aerogel – the micro structural material of the future

Posted on August 23, 2020

Aerogel is an excellent thermal insulator. So far, however, it has mainly been used on a large scale, for example in environmental technology, in physical experiments or in industrial catalysis. Empa researchers have now succeeded in making aerogels accessible to microelectronics and precision engineering: An article in the latest issue of the scientific journal “Nature” shows how 3D-printed parts made of silica aerogels and silica composite materials can be manufactured with high precision. This opens up numerous new application possibilities in the high-tech industry, for example in microelectronics, robotics, biotechnology and sensor technology.

Silica aerogels are light, porous foams that provide excellent thermal insulation. In practice, they are also known for their brittle behaviour, which is why they are usually reinforced with fibres or with organic or biopolymers for large-scale applications. Due to their brittle fracture behaviour, it is also not possible to saw or mill small pieces out of a larger aerogel block. Directly solidifying the gel in miniaturised moulds is also not reliably – which results in high scrap rates. This is why aerogels have hardly been usable for small-scale applications.

The Empa researchers have now succeeded in producing stable, well-shaped microstructures from silica aerogel by using a 3D printer. The printed structures can be as thin as a tenth of a millimeter. The thermal conductivity of the silica aerogel is only half that of polystyrene and even significantly less than that of a non-moving layer of air. At the same time, the novel printed silica aerogel has even better mechanical properties and can even be drilled and milled. This opens up completely new possibilities for the post-processing of 3D printed aerogel mouldings.

With the method, for which a patent application has now been filed, it is possible to precisely adjust the flow and solidification properties of the silica ink from which the aerogel is later produced, so that both self-supporting structures and wafer-thin membranes can be printed. As an example of overhanging structures, the researchers printed leaves and blossoms of a lotus flower. The test object floats on the water surface due to the hydrophobic properties and low density of the silica aerogel – just like its natural model. The new technology also makes it possible for the first time to print complex 3D multi-material microstructures.

With such structures it is now comparatively trivial to thermally insulate even the smallest electronic components from each other. The researchers were able to demonstrate the thermal shielding of a temperature-sensitive component and the thermal management of a local “hot spot” in an impressive way. Another possible application is the shielding of heat sources inside medical implants, which should not exceed a surface temperature of 37 degrees in order to protect body tissue.

3D printing allows multilayer/multi-material combinations to be produced much more reliably and reproducibly. Novel aerogel fine structures become feasible and open up new technical solutions. Using a printed aerogel membrane, the researchers constructed a “thermos-molecular” gas pump. This permeation pump manages without any moving parts at all and is also known to the technical community as a Knudsen pump, named after the Danish physicist Martin Knudsen. The principle of operation is based on the restricted gas transport in a network of nanoscale pores or one-dimensional channels of which the walls are hot at one end and cold at the other. The team built such a pump from aerogel, which was doped on one side with black manganese oxide nanoparticles. When this pump is placed under a light source, it becomes warm on the dark side and starts to pump gases or solvent vapours.

News Source: EMPA

Share

Related News:

  1. Large Scale Robotic 3D Printing by 3Dp technology of “Ai Build”
  2. Zero waste 3D printing
  3. 5 Children get 3D-printed Lab-Made Ears Grown From Their Own Cells
  4. Researchers 3D print prototype for ‘bionic eye’
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • Harvard Sues Trump Administration Over International Student Ban May 23, 2025
  • Stanford Researchers Develop AI Agents That Simulate Human Behavior with High Accuracy May 23, 2025
  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025
  • Anthropic Launches Claude Code to Revolutionize Developer Productivity February 25, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme