Skip to content

QualityPoint Technologies News

Emerging Technologies News

Menu
  • About Us
  • Technology
  • Medical
  • Robots
  • Artificial Intelligence (AI)
  • 3D Printing
  • Contact Us
Menu

Huge Discount Offer: 14 ebooks + 2 courses

VibroSense makes house appliances ‘smart’ by tracking their vibrations

Posted on September 11, 2020

To boost efficiency in typical households – where people forget to take wet clothes out of washing machines, retrieve hot food from microwaves and turn off dripping faucets – Cornell researchers have developed a single device that can track 17 types of appliances using vibrations.

The device, called VibroSense, uses lasers to capture subtle vibrations in walls, ceilings and floors, as well as a deep learning network that models the vibrometer’s data to create different signatures for each appliance – bringing researchers closer to a more efficient and integrated smart home.

Recognizing home activities can help computers better understand human behaviors and needs, with the hope of developing a better human-machine interface.

The research paper was published in the journal Proceedings of the Association for Computing Machinery on Interactive, Mobile, Wearable and Ubiquitous Technologies.

In order to have a smart home at this point, we would need each device to be smart, which is not realistic; or we would need to install separate sensors on each device or in each area.

In order to detect usage across an entire house, the researchers’ task was twofold: detect tiny vibrations using a laser Doppler vibrometer; and differentiate similar vibrations created by multiple devices by identifying the paths traveled by the vibrations from room to room.

The deep learning network was trained to distinguish different activities, partly by learning path signatures – the distinctive path vibrations followed through the house – as well as their distinct noises.

The device showed nearly 96% accuracy in identifying 17 different activities across five houses – including dripping faucets, an exhaust fan, an electric kettle, a refrigerator and a range hood. VibroSense could also distinguish five different stages of appliance usage with an average accuracy more than 97%.

In single-story houses, the laser was pointed at an interior wall at the center of the home. It was pointed at the ceiling in two-story homes.

The device is primarily useful in single-family houses, because in buildings it could pick up activities in neighboring apartments, presenting a potential privacy risk.

Among other uses, the system could help homes monitor energy usage and potentially help reduce consumption.

Since this system can detect both the occurrence of an indoor event, as well as the time of an event, it could be used to estimate electricity and water-usage rates, and provide energy-saving advice for homeowners.

It could also prevent water and electrical waste, as well as electrical failures such as short circuits in home appliances.

News Source: Cornell

Share

Related News:

  1. System uses ‘deep learning’ to detect cracks in nuclear reactors
  2. AI solves Rubik’s Cube faster than any Human
  3. New super-resolution method reveals fine details without constantly needing to zoom in
  4. System brings deep learning to ‘internet of things’ devices
Master RAG ⭐ Rajamanickam.com ⭐ Bundle Offer ⭐ Merch ⭐ AI Course

  • Bundle Offer
  • Hire AI Developer

Latest News

  • ​Firebase Studio: Google’s New Platform for Building AI-Powered Applications April 11, 2025
  • MIT Researchers Develop Framework to Enhance LLMs in Complex Planning April 7, 2025
  • MIT and NVIDIA Unveil HART: A Breakthrough in AI Image Generation March 25, 2025
  • Can LLMs Truly Understand Time Series Anomalies? March 18, 2025
  • Can AI tell us if those Zoom calls are flowing smoothly? March 11, 2025
  • New AI Agent, Manus, Emerges to Bridge the Gap Between Conception and Execution March 10, 2025
  • OpenAI Unveils GPT-4.5, Promising Enhanced AI Performance February 28, 2025
  • Anthropic Launches Claude Code to Revolutionize Developer Productivity February 25, 2025
  • Google Unveils Revolutionary AI Co-Scientist! February 24, 2025
  • Microsoft’s Majorana 1 Chip: Revolutionizing Quantum Computing with Topological Core Architecture February 20, 2025

Pages

  • About Us
  • Basics of 3D Printing
  • Key Innovations
  • Know about Graphene
  • Privacy Policy
  • Shop
  • Contact Us

Archives

Developed by QualityPoint Technologies (QPT)

QPT Products | eBook | Privacy

Timesheet | Calendar Generator

©2025 QualityPoint Technologies News | Design: Newspaperly WordPress Theme