Wearable cameras such as Snap Spectacles promise to share videos of live concerts or surgeries instantaneously with the world. But because these cameras must use smaller batteries to stay lightweight and functional, these devices can’t perform high-definition video streaming.
Now, engineers at the University of Washington have developed a new HD video streaming method that doesn’t need to be plugged in. Their prototype skips the power-hungry parts and has something else, like a smartphone, process the video instead.
They do this using a technique called backscatter, through which a device can share information by reflecting signals that have been transmitted to it.
The UW team developed a new system that eliminates all of these components. Instead, the pixels in the camera are directly connected to the antenna, and it sends intensity values via backscatter to a nearby smartphone. The phone, which doesn’t have the same size and weight restrictions as a small streaming camera, can process the video instead.
For the video transmission, the system translates the pixel information from each frame into a series of pulses where the width of each pulse represents a pixel value. The time duration of the pulse is proportional to the brightness of the pixel.
The team tested their idea using a prototype that converted HD YouTube videos into raw pixel data. Then they fed the pixels into their backscatter system. Their design could stream 720p HD videos at 10 frames per second to a device up to 14 feet away.
News Source: http://www.washington.edu/news/2018/04/19/researchers-achieve-hd-video-streaming-at-10000-times-lower-power/