Insect-sized flying robots could help with time-consuming tasks like surveying crop growth on large farms or sniffing out gas leaks. These robots soar by fluttering tiny wings because they are too small to use propellers, like those seen on their larger drone cousins. Small size is advantageous: These robots are cheap to make and can easily slip into tight places that are inaccessible to big drones.
But current flying robo-insects are still tethered to the ground. The electronics they need to power and control their wings are too heavy for these miniature robots to carry.
Now, engineers at the University of Washington have for the first time cut the cord and added a brain, allowing their RoboFly to take its first independent flaps. This might be one small flap for a robot, but it’s one giant leap for robot-kind.
RoboFly is slightly heavier than a toothpick and is powered by a laser beam. It uses a tiny onboard circuit that converts the laser energy into enough electricity to operate its wings. RoboFly is slightly larger than a real fly.
To give RoboFly control over its own wings, the engineers provided a brain: They added a microcontroller to the same circuit.
For now, RoboFly can only take off and land. Once its photovoltaic cell is out of the direct line of sight of the laser, the robot runs out of power and lands. But the team hopes to soon be able to steer the laser so that RoboFly can hover and fly around.
While RoboFly is currently powered by a laser beam, future versions could use tiny batteries or harvest energy from radio frequency signals, Gollakota said. That way, their power source can be modified for specific tasks.
News Source: http://www.washington.edu/news/2018/05/15/robofly/