Using sound waves, an international team of researchers has developed a gentle, contact-free method for separating circulating tumor cells from blood samples that is fast and efficient enough for clinical use.Circulating tumor cells (CTCs) are small pieces of a tumor that break away and flow through the bloodstream. They contain a wealth of information about the tumor, such as its type, physical characteristics and genetic mutations.
The ability to quickly and efficiently harvest and grow these cells from a blood sample would enable “liquid biopsies” capable of providing robust diagnosis, prognosis and suggestions for treatment strategies based on individual CTC profiling.
CTCs are, however, extremely rare and difficult to catch. There are typically only a handful for every few billion blood cells running through a patient’s veins. And while there are many technologies designed to separate tumor cells from normal blood cells, none of them are perfect. They tend to damage or kill the cells in the process, lack efficiency, only work on specific types of cancer, or take far too long to be used in many situations.
Biopsy is the gold standard technique for cancer diagnosis. But it is painful and invasive and is often not administered until late in the cancer’s development. With our circulating tumor cell separation technology, we could potentially help find out, in a non-invasive manner, whether the patient has cancer, where the cancer is located, what stage it’s in, and what drugs would work best. All from a small sample of blood drawn from the patient.
The technology works by setting up a standing sound wave at an angle to a fluid flowing through a tiny channel. Because sound is nothing more than a pressure wave, this sets up pockets of pressure that push on particles suspended in the liquid as they pass. This acoustic force acts more strongly on the larger, more rigid cancer cells than on normal blood cells, pushing the CTCs into a separate channel for collection.
The idea is to develop personalized medicine approaches to individual patients based on their cancer biology, similar to what infectious disease doctors do with bacterial cultures and antibiotics.
News Source: https://www.eurekalert.org/pub_releases/2018-07/du-swc062818.php
Watch more Science news videos at our YouTube Channel Qualitypointtech