Combining new classes of nanomembrane electrodes with flexible electronics and a deep learning algorithm could help disabled people wirelessly control an electric wheelchair, interact with a computer or operate a small robotic vehicle without putting a bulky hair-electrode cap or contending with wires.
By providing a fully portable, wireless brain-machine interface (BMI), the wearable system could offer an improvement over conventional electroencephalography (EEG) for measuring signals from visually evoked potentials in the human brain. The system’s ability to measure EEG signals for BMI has been evaluated with six human subjects, but has not been studied with disabled individuals.
Georgia Tech Researchers’ this work reports fundamental strategies to design an ergonomic, portable EEG system for a broad range of assistive devices, smart home systems and neuro-gaming interfaces
Gathering brain signals now requires use of an electrode-studded hair cap that uses wet electrodes, adhesives and wires to connect with computer equipment that interprets the signals.
The researchers are taking advantage of a new class of flexible, wireless sensors and electronics that can be easily applied to the skin. The system includes three primary components: highly flexible, hair-mounted electrodes that make direct contact with the scalp through hair; an ultrathin nanomembrane electrode; and soft, flexible circuity with a Bluetooth telemetry unit. The recorded EEG data from the brain is processed in the flexible circuitry, then wirelessly delivered to a tablet computer via Bluetooth from up to 15 meters away.
Beyond the sensing requirements, detecting and analyzing the brain signals have been challenging because of the low signal amplitude, which is in the range of tens of micro-volts, similar to electrical noise in the body. Researchers also must deal with variation in human brains. Yet accurately measuring the signals is essential to determining what the user wants the system to do.
To address those challenges, the research team turned to deep learning neural network algorithms running on the flexible circuitry.
Deep learning methods, commonly used to classify pictures of everyday things such as cats and dogs, are used to analyze the EEG signals.
The system uses three elastomeric scalp electrodes held onto the head with a fabric band, ultrathin wireless electronics conformed to the neck, and a skin-like printed electrode placed on the skin below an ear. The dry soft electrodes adhere to the skin and do not use adhesive or gel. Along with ease of use, the system could reduce noise and interference and provide higher data transmission rates compared to existing systems.
The system was evaluated with six human subjects. The deep learning algorithm with real-time data classification could control an electric wheelchair and a small robotic vehicle. The signals could also be used to control a display system without using a keyboard, joystick or
News Source: Georgia Institute of Technology