There is a huge demand for prosthetic heart valves and other cardiac devices — a market that is valued at more than $5 billion dollars today. This demand is predicted to rise by almost 13 percent in the next six years.
Prosthetic valves are designed to mimic a real, healthy heart valve in helping to circulate blood through the body. However, many of them have issues such as leakage around the valve, and engineers working to improve these designs must test them repeatedly, first in simple benchtop simulators, then in animal subjects, before reaching human trials. It is a difficult and expensive process.
Now engineers at MIT and elsewhere have developed a bionic “heart” that offers a more realistic model for testing out artificial valves and other cardiac devices.
The device is a real biological heart whose tough muscle tissue has been replaced with a soft robotic matrix of artificial heart muscles, resembling bubble wrap. The orientation of the artificial muscles mimics the pattern of the heart’s natural muscle fibers, in such a way that when the researchers remotely inflate the bubbles, they act together to squeeze and twist the inner heart, similar to the way a real, whole heart beats and pumps blood.
With this new design, which they call a “biorobotic hybrid heart,” the researchers envision that device designers and engineers could iterate and fine-tune designs more quickly by testing on the biohybrid heart, significantly reducing the cost of cardiac device development.
News Source: MIT News