Researchers from the University of Massachusetts Amherst have invented a portable surveillance device powered by machine learning – called FluSense – which can detect coughing and crowd size in real time, then analyze the data to directly monitor flu-like illnesses and influenza trends.
The FluSense creators say the new edge-computing platform, envisioned for use in hospitals, healthcare waiting rooms and larger public spaces, may expand the arsenal of health surveillance tools used to forecast seasonal flu and other viral respiratory outbreaks.
Models like these can be lifesavers by directly informing the public health response during a flu epidemic. These data sources can help determine the timing for flu vaccine campaigns, potential travel restrictions, the allocation of medical supplies and more.
The FluSense platform processes a low-cost microphone array and thermal imaging data with a Raspberry Pi and neural computing engine. It stores no personally identifiable information, such as speech data or distinguishing images
The researchers placed the FluSense devices, encased in a rectangular box about the size of a large dictionary, in four healthcare waiting rooms at UMass’s University Health Services clinic.
From December 2018 to July 2019, the FluSense platform collected and analyzed more than 350,000 thermal images and 21 million non-speech audio samples from the public waiting areas.
The researchers found that FluSense was able to accurately predict daily illness rates at the university clinic. Multiple and complementary sets of FluSense signals “strongly correlated” with laboratory-based testing for flu-like illnesses and influenza itself.
News Source: Eurekalert