In the movie “Ant-Man,” the title character can shrink in size and travel by soaring on the back of an insect. Now researchers at the University of Washington have developed a tiny wireless steerable camera that can also ride aboard an insect, giving everyone a chance to see an Ant-Man view of the world.
The camera, which streams video to a smartphone at 1 to 5 frames per second, sits on a mechanical arm that can pivot 60 degrees. This allows a viewer to capture a high-resolution, panoramic shot or track a moving object while expending a minimal amount of energy. To demonstrate the versatility of this system, which weighs about 250 milligrams — about one-tenth the weight of a playing card — the team mounted it on top of live beetles and insect-sized robots.
The results were published in the journal Science Robotics.
The researchers have created a low-power, low-weight, wireless camera system that can capture a first-person view of what’s happening from an actual live insect or create vision for small robots.
Vision is so important for communication and for navigation, but it’s extremely challenging to do it at such a small scale. As a result, prior to this work, wireless vision has not been possible for small robots or insects.
Typical small cameras, such as those used in smartphones, use a lot of power to capture wide-angle, high-resolution photos, and that doesn’t work at the insect scale. While the cameras themselves are lightweight, the batteries they need to support them make the overall system too big and heavy for insects — or insect-sized robots — to lug around. So the team took a lesson from biology.
Similar to cameras, vision in animals requires a lot of power. It’s less of a big deal in larger creatures like humans, but flies are using 10 to 20% of their resting energy just to power their brains, most of which is devoted to visual processing. To help cut the cost, some flies have a small, high-resolution region of their compound eyes. They turn their heads to steer where they want to see with extra clarity, such as for chasing prey or a mate. This saves power over having high resolution over their entire visual field.
To mimic an animal’s vision, the researchers used a tiny, ultra-low-power black-and-white camera that can sweep across a field of view with the help of a mechanical arm. The arm moves when the team applies a high voltage, which makes the material bend and move the camera to the desired position. Unless the team applies more power, the arm stays at that angle for about a minute before relaxing back to its original position. This is similar to how people can keep their head turned in one direction for only a short period of time before returning to a more neutral position.
The camera and arm are controlled via Bluetooth from a smartphone from a distance up to 120 meters away, just a little longer than a football field.
The researchers attached their removable system to the backs of two different types of beetles. Similar beetles have been known to be able to carry loads heavier than half a gram.
They were able to navigate freely across gravel, up a slope and even climb trees.
The beetles also lived for at least a year after the experiment ended.
The researchers added a small accelerometer to the system to be able to detect when the beetle moves. Then it only captures images during that time.
The researchers also used their camera system to design the world’s smallest terrestrial, power-autonomous robot with wireless vision. This insect-sized robot uses vibrations to move and consumes almost the same power as low-power Bluetooth radios need to operate.
The team found, however, that the vibrations shook the camera and produced distorted images. The researchers solved this issue by having the robot stop momentarily, take a picture and then resume its journey. With this strategy, the system was still able to move about 2 to 3 centimeters per second — faster than any other tiny robot that uses vibrations to move — and had a battery life of about 90 minutes.
While the team is excited about the potential for lightweight and low-power mobile cameras, the researchers acknowledge that this technology comes with a new set of privacy risks.
Applications could range from biology to exploring novel environments. The team hopes that future versions of the camera will require even less power and be battery free, potentially solar-powered.
News Source: University of Washington