Pacemakers and other implantable cardiac devices used to monitor and treat arrhythmias and other heart problems have generally had one of two drawbacks – they are made with rigid materials that can’t move to accommodate a beating heart, or they are made from soft materials that can collect only a limited amount of information.
Researchers from the University of Houston have reported in the journal Nature Electronics a patch made from fully rubbery electronics that can be placed directly on the heart to collect electrophysiological activity, temperature, heartbeat and other indicators, all at the same time.
The device marks the first time bioelectronics have been developed based on fully rubbery electronic materials that are compatible with heart tissue, allowing the device to solve the limitations of previous cardiac implants, which are mainly made out of rigid electronic materials.
This device can quickly identify the problem for people who have heart arrhythmia or a heart attack.
In addition to the ability to simultaneously collect information from multiple locations on the heart – a characteristic known as spatiotemporal mapping – the device can harvest energy from the heart beating, allowing it to perform without an external power source. That allows it to not just track data for diagnostics and monitoring but to also offer therapeutic benefits such as electrical pacing and thermal ablation.
News Source: University of Houston