A groundbreaking research offers new hope to millions with asthma and severe food allergies, signalling a new strategy for the prevention of life-threatening reactions.
Scientists at Duke-NUS Medical School have identified how the first domino falls after a person encounters an allergen, such as peanuts, shellfish, pollen or dust mites. Their discovery, published in the journal Nature Immunology, could herald the development of drugs to prevent these severe reactions.
It is well established that when mast cells, a type of immune cell, mistake a harmless substance, such as peanuts or dust mites, as a threat, they release an immediate first wave of bioactive chemicals against the perceived threat. When mast cells, which reside under the skin, around blood vessels and in the linings of the airways and the gastrointestinal tract, simultaneously release their pre-stored load of bioactive chemicals into the blood, instant and systemic shock can result, which can be lethal without quick intervention.
More than 10 per cent of the global population suffers from food allergies, according to the World Health Organisation (WHO). As allergy rates continue to climb, so does the incidence of food-triggered anaphylaxis and asthma worldwide. In Singapore, asthma affects one in five children while food allergies are already the leading cause of anaphylactic shock.
What the team at Duke-NUS has now discovered is that the release of particulate mast cell granules, which contain these bioactive chemicals, is controlled by two members of an intracellular multiprotein complex called inflammasome. Until now, these inflammasome proteins were only known to spontaneously assemble within immune cells to secrete soluble chemicals to alert other parts of the immune system upon detection of an infection.